
Machine Learning and Data Mining

Clustering (1): Basics

Kalev Kask

+

Unsupervised learning
• Supervised learning

– Predict target value (“y”) given features (“x”)

• Unsupervised learning

– Understand patterns of data (just “x”)

– Useful for many reasons

• Data mining (“explain”)

• Missing data values (“impute”)

• Representation (feature generation or selection)

• One example: clustering

– Describe data by discrete “groups” with some characteristics

Clustering
• Clustering describes data by “groups”

• The meaning of “groups” may vary by data!

• Examples

Location Shape Density

• Clustering is related to vector quantization

– Dictionary of vectors (the cluster centers)

– Each original value represented using a dictionary index

– Each center “claims” a nearby region (Voronoi region)

Clustering and Data Compression

• Clustering is related to vector quantization

– Dictionary of vectors (the cluster centers)

– Each original value represented using a dictionary index

– Each center “claims” a nearby region (Voronoi region)

• Example in 1D: cluster pixels’ grayscale values

Clustering and Data Compression

Machine Learning and Data Mining

Clustering (2):
Hierarchical Agglomerative Clustering

Kalev Kask

+

Hierarchical Agglomerative Clustering

• A simple clustering algorithm

• Define a distance (or dissimilarity)

between clusters (we’ll return to this)

• Initialize: every example is a cluster

• Iterate:

– Compute distances between all

clusters

(store for efficiency)

– Merge two closest clusters

• Save both clustering and sequence

of cluster operations

• “Dendrogram”

Initially, every datum is a cluster

Algorithmic Complexity: O(m2 log m) +

Data:

Algorithmic Complexity: O(m2 log m) + O(m log m) +

Data:

Height of the join

indicates dissimilarity

Dendrogram:

Builds up a sequence of clusters (“hierarchical”)

Iteration 1

Algorithmic Complexity: O(m2 log m) + 2*O(m log m) +

Data:

Height of the join

indicates dissimilarity

Dendrogram:

Builds up a sequence of clusters (“hierarchical”)

Iteration 2

Algorithmic Complexity: O(m2 log m) + 3*O(m log m) +

Data:

Height of the join

indicates dissimilarity

Dendrogram:

Builds up a sequence of clusters (“hierarchical”)

Iteration 3

In matlab: “linkage” function (stats toolbox)

In mltools: “agglomerative”

Algorithmic Complexity: O(m2 log m) + (m-3)*O(m log m) +

Data: Dendrogram:

Builds up a sequence of clusters (“hierarchical”)

Iteration m-3

Data: Dendrogram:

Algorithmic Complexity: O(m2 log m) + (m-2)*O(m log m) +

Builds up a sequence of clusters (“hierarchical”)

Iteration m-2

In matlab: “linkage” function (stats toolbox)

In mltools: “agglomerative”

Data: Dendrogram:

Algorithmic Complexity: O(m2 log m) + (m-1)*O(m log m) = O(m2 log m)

Builds up a sequence of clusters (“hierarchical”)

Iteration m-1

In matlab: “linkage” function (stats toolbox)

In mltools: “agglomerative”

Data: Dendrogram:

Algorithmic Complexity: O(m2 log m) + (m-1)*O(m log m) = O(m2 log m)

Given the sequence, can select a number of clusters or a dissimilarity threshold:

From dendrogram to clusters

In matlab: “linkage” function (stats toolbox)

In mltools: “agglomerative”

produces minimal spanning tree.

avoids elongated clusters.

Need:

D(A,C)

D(B,C)
D(A+B,C)

Cluster distances

Cluster distances
• Dissimilarity choice will affect clusters created

Single linkage (min) Complete linkage (max)

Example: microarray expression
• Measure gene expression

• Various experimental conditions

– Disease v. normal

– Time

– Subjects

• Explore similarities

– What genes change together?

– What conditions are similar?

• Cluster on both genes and
conditions

Matlab: “clustergram” (bioinfo toolbox)

Summary
• Agglomerative clustering

– Choose a cluster distance / dissimilarity scoring method

– Successively merge closest pair of clusters

– “Dendrogram” shows sequence of merges & distances

– Complexity: O(m2 log m)

• “Clustergram” for understanding data matrix
– Build clusters on rows (data) and columns (features)

– Reorder data & features to expose behavior across groups

• Agglomerative clusters depend critically on dissimilarity
– Choice determines characteristics of “found” clusters

Machine Learning and Data Mining

Clustering (3):
k-Means Clustering

Kalev Kask

+

K-Means Clustering
• A simple clustering algorithm

• Iterate between

– Updating the assignment of data to clusters

– Updating the cluster’s summarization

Notation:

Data example i has features xi

Assume K clusters

Each cluster c “described” by a center ¹c

Each cluster will “claim” a set of nearby points

x

x

x ¹2

¹3

¹1

Matlab: “kmeans” (stats toolbox)

K-Means Clustering
• A simple clustering algorithm

• Iterate between

– Updating the assignment of data to clusters

– Updating the cluster’s summarization

Notation:

Data example i has features xi

Assume K clusters

Each cluster c “described” by a center ¹c

Each cluster will “claim” a set of nearby points

“Assignment” of ith example: zi 2 1..K

Matlab: “kmeans” (stats toolbox)

x

x

x ¹2

¹3

¹1

z2 = 3

z1 = 1

K-Means Clustering
• Iterate until convergence:

– (A) For each datum, find the closest cluster

– (B) Set each cluster to the mean of all assigned data:

x

x

x

x

(A) (B)

K-Means Clustering
• Optimizing the cost function:

• Coordinate descent:

x

x

x

x

Over the cluster assignments:

Only one term in sum depends on zi

Minimized by selecting closest ¹c

Over the cluster centers:

Cluster c only depends on xi with zi=c

Minimized by selecting the mean

Descent => guaranteed to converge

New means = same assignments

Same assignments = same means

Same means = same assignments

…

(A) (B)

Initialization
• Multiple local optima, depending on initialization

• Try different (randomized) initializations

• Can use cost C to decide which we prefer

C = 212.6 C = 167.0C = 223.3

Initialization methods
• Random

– Usually, choose random data index

– Ensures centers are near some data

– Issue: may choose nearby points

Initialization methods
• Random

– Usually, choose random data index

– Ensures centers are near some data

– Issue: may choose nearby points

• Distance-based
– Start with one random data point

– Find the point farthest from the clusters chosen so far

– Issue: may choose outliers

Initialization methods
• Random

– Usually, choose random data index

– Ensures centers are near some data

– Issue: may choose nearby points

• Distance-based
– Start with one random data point

– Find the point farthest from the clusters chosen so far

– Issue: may choose outliers

• Random + distance (“k-means++”) (Arthur & Vassilvitskii, 2007)

– Choose next points “far but randomly”

p(x) / squared distance from x to current centers

– Likely to put a cluster far away, in a region with lots of data

Out-of-sample points
• Often want to use clustering on new data

• Easy for k-means: choose nearest cluster center

perform clustering

Z , mu , score = kmeans(X, K);

cluster id = nearest center

L = knnClassify(mu, range(K), 1);

assign in- or out-of-sample points

Z = L.predict(X);

Choosing the number of clusters
• With cost function

what is the optimal value of k?

• Cost always decreases with k!

• A model complexity issue…

K=3 K=5 K=10

Choosing the number of clusters
• With cost function

what is the optimal value of k?

• Cost always decreases with k!

• A model complexity issue…

• One solution is to penalize for complexity
– Add penalty: Total = Error + Complexity

– Now more clusters can increase cost, if they don’t help “enough”

– Ex: simplified BIC penalty

– More precise version: see e.g. “X-means” (Pelleg & Moore 2000)

Summary
• K-Means clustering

– Clusters described as locations (“centers”) in feature space

• Procedure
– Initialize cluster centers

– Iterate: assign each data point to its closest cluster center

– : move cluster centers to minimize mean squared error

• Properties
– Coordinate descent on MSE criterion

– Prone to local optima; initialization important

• Out-of-sample data

• Choosing the # of clusters, K
– Model selection problem; penalize for complexity (BIC, etc.)

Machine Learning and Data Mining

Clustering (4):
Gaussian Mixtures & EM

Kalev Kask

+

Mixtures of Gaussians
• K-means algorithm

– Assigned each example to exactly one cluster

– What if clusters are overlapping?

• Hard to tell which cluster is right

• Maybe we should try to remain uncertain

– Used Euclidean distance

– What if cluster has a non-circular shape?

• Gaussian mixture models

– Clusters modeled as Gaussians

• Not just by their mean

– EM algorithm: assign data to

cluster with some probability

– Gives probability model of x! (“generative”)

Mixtures of Gaussians
• Start with parameters describing each cluster

• Mean ¹c , variance ¾c , “size” ¼c

• Probability distribution:

xx xxx x x x x xx x x x x

Mixtures of Gaussians
• Start with parameters describing each cluster

• Mean ¹c , variance ¾c , “size” ¼c

• Probability distribution:

• Equivalent “latent variable” form:

Select a mixture component with probability ¼

¼1 ¼2

¼3

x

Sample from that component’s Gaussian

“Latent assignment” z:

we observe x, but z is hidden

p(x) = marginal over x

We’ll model each cluster

using one of these Gaussian

“bells”…-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

Maximum Likelihood estimates

Multivariate Gaussian models

EM Algorithm: E-step
• Start with clusters: Mean ¹c, Covariance §c, “size” ¼c

• E-step (“Expectation”)
– For each datum (example) xi,

– Compute “ric”, the probability that it belongs to cluster c

• Compute its probability under model c

• Normalize to sum to one (over clusters c)

¼1 N(x ; ¹1, §1)

x

EM Algorithm: E-step
• Start with clusters: Mean ¹c, Covariance §c, “size” ¼c

• E-step (“Expectation”)
– For each datum (example) xi,

– Compute “ric”, the probability that it belongs to cluster c

• Compute its probability under model c

• Normalize to sum to one (over clusters c)

– If xi is very likely under the cth Gaussian, it gets high weight

– Denominator just makes r’s sum to one

¼2 N(x ; ¹2, §2)

r1 ¼ .33; r2 ¼ .66

x

EM Algorithm: M-step
• Start with assignment probabilities ric

• Update parameters: mean ¹c, Covariance §c, “size” ¼c

• M-step (“Maximization”)
– For each cluster (Gaussian) z = c,

– Update its parameters using the (weighted) data points

Total responsibility allocated to cluster c

Fraction of total assigned to cluster c

Weighted mean of assigned data Weighted covariance of assigned data

(use new weighted means here)

Expectation-Maximization
• Each step increases the log-likelihood of our model

(we won’t derive this here, though)

• Iterate until convergence

– Convergence guaranteed – another ascent method

– Local optima: initialization often important

• What should we do

– If we want to choose a single cluster for an “answer”?

– With new data we didn’t see during training?

• Choosing the number of clusters

– Can use penalized likelihood of training data (like k-means

– True probability model: can use log-likelihood of test data, log p(x’)

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4
ANEMIA PATIENTS AND CONTROLS

Red Blood Cell Volume

R
e
d
 B

lo
o
d
 C

e
ll

H
e
m

o
g
lo

b
in

 C
o
n
c
e
n
tr

a
ti
o
n

From P. Smyth

ICML 2001

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 1

From P. Smyth

ICML 2001

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 3

From P. Smyth

ICML 2001

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 5

From P. Smyth

ICML 2001

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 10

From P. Smyth

ICML 2001

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 15

From P. Smyth

ICML 2001

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 25

From P. Smyth

ICML 2001

0 5 10 15 20 25
400

410

420

430

440

450

460

470

480

490
LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS

EM Iteration

L
o

g
-L

ik
e

li
h

o
o

d

From P. Smyth

ICML 2001

• EM is a general framework for partially observed data

– “Complete data” xi, zi – features and assignments

– Assignments zi are missing (unobserved)

• EM corresponds to

– Computing the distribution over all zi given the parameters

– Maximizing the “expected complete” log likelihood

– GMMs = plug in “soft assignments”, but not always so easy

• Alternatives: Stochastic EM, Hard EM

– Instead of expectations, just sample the zi or choose best (often easier)

– Called “imputing” the values of z

– Hard EM: similar to EM, but less “smooth”, more local minima

– Stochastic EM: similar to EM, but with extra randomness

• Not obvious when it has converged

EM and missing data

Summary
• Gaussian mixture models

– Flexible class of probability distributions

– Explain variation with hidden groupings or clusters of data

– Latent “membership” z(i)

– Feature values x(i) are Gaussian given z(i)

• Expectation-Maximization
– Compute soft membership probabilities, “responsibility” ric

– Update mixture component parameters given soft memberships

– Ascent on log-likelihood: convergent, but local optima

• Selecting the number of clusters
– Penalized likelihood or validation data likelihood

• Another technique for inferring uncertain cluster assignments

– K-means: take the best assignment

– EM: assign “partially”

– Stochastic EM: sample assignment

– All: choose best cluster descriptions given assignments

• Gibbs sampling (“Markov chain Monte Carlo”)

– Assign randomly, probability equal to EM’s weight

– Sample a cluster description given assignment

– Requires a probability model over cluster parameters

• This doesn’t really find the “best” clustering

– It eventually samples almost all “good” clusterings

– Converges “in probability”, randomness helps us explore configurations

– Also tells us about uncertainty of clustering

– Disadvantage: not obvious when “done”

Gibbs sampling for clustering

• How many clusters are there?

• Gibbs sampling has an interesting solution

– Write a distribution over k, the # of clusters

– Sample k also

• Can do our sampling sequentially

– Draw each zi given all the others

– Instead of sampling cluster parameters, marginalize them

– Defines a distribution over groupings of data

• Now, for each zi, sample

– Join an existing cluster? Or, join a new cluster?

• What are these probabilities?

– “Dirichlet process” mixture models

“Infinite” mixture models

Parametric and Nonparametric

Models
• Every model has some parameters

– “The stuff you have to store to make your prediction”

– Logistic regression: weights

– Decision tree: feature to split, value at each level

– Gaussian mixture model: means, covariances, sizes

• Parametric vs Nonparametric models

– Parametric: fixed # of parameters

– Nonparametric: # of parameters grows with more data

• What type are

– Logistic regression?

– Nearest neighbor prediction?

– Decision trees?

– Decision trees of depth < 3?

– Gaussian mixture model?

Summary

• Clustering algorithms

– Agglomerative clustering

– K-means

– Expectation-Maximization

Open questions for each application:

• What does it mean to be “close” or “similar”?
– Depends on your particular problem…

• “Local” versus “global” notions of simliarity

– Former is easy, but we usually want the latter…

• Is it better to “understand” the data itself (unsupervised learning),
to focus just on the final task (supervised learning), or both?

• Do we need a generative model? Out-of-sample assignments?

